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The Theory

The central limit theorem proves that the sum of any iid random variables is normally distributed (as num-
ber of variables tends towards infinity). Consider IID random variables X1,X2 . . . such that E[Xi] = µ and
Var(Xi) = σ2 (since the variables are identically distributed µ and σ2 is the same for all Xi). Let Y be the
sum of the Xis:

Y =
n

∑
i=1

Xi

The central limit theorem states:

Y ∼ N(nµ,nσ
2) as n→ ∞

Big deal! At this point you probably think that the central limit theorem is awesome. But it gets even better.
With some algebraic manipulation we can show that if the sum of IID random variables is normal, it follows
that the mean of equally weighted IID random variables must also be normal. Let’s call the mean of IID
random variables X̄ :

X̄ =
1
n

n

∑
i=1

Xi =
1
n
·Y If we define Y to be the sum of our variables

∼ N(µ,
σ2

n
) Since Y is a normal and

1
n

is a constant.

In summary, the central limit theorem explains that the sum aof IID variables is normal (regardless of what
distribution the IID variables came from) and the mean of equally weighted IID random variables is normal
(again, regardless of the underlying distribution).

Example 1

Say you have a new algorithm and you want to test its running time. You have an idea of the variance of the
algorithm’s run time: σ2 = 4sec2 but you want to estimate the mean: µ = tsec. You can run the algorithm
repeatedly (IID trials). How many trials do you have to run so that your estimated runtime = t±0.5 with 95%
certainty? LetXi be the run time of the i-th run (for 1≤ i≤ n).

0.95 = P(−0.5≤ ∑
n
i=1 Xi

n
− t ≤ 0.5)

By the central limit theorem, the standard normal Z must be equal to:

Z =
(∑n

i=1 Xi)−nµ

σ
√

n

=
(∑n

i=1 Xi)−nt
2
√

n



Now we rewrite our probability inequality so that the central term is Z:
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And now we can find the value of n that makes this equation hold.

0.95 = φ(

√
n

4
)−φ(−

√
n

4
) = φ(

√
n

4
)− (1−φ(

√
n

4
))

= 2φ(

√
n

4
)−1

0.975 = φ(

√
n

4
)

φ
−1(0.975) =

√
n

4

1.96 =

√
n

4
n = 61.4

Thus it takes 62 runs. If you are interested in how this extends to cases where the variance is unknown, look
into variations of the students’ t-test.

Example 2

You will roll a 6 sided dice 10 times. Let X be the total value of all 10 dice = X1 +X2 + · · ·+X10. You win
the game if X ≤ 25 or X ≥ 45. Use the central limit theorem to calculate the probability that you win.

Recall that E[Xi] = 3.5 and Var(Xi) =
35
12 .

P(X ≤ 25 or X ≥ 45) = 1−P(25.5≤ X ≤ 44.5)

= 1−P(
25.5−10(3.5)√

35/12
√

10
≤ X−10(3.5)√

35/12
√

10
≤ 44.5−10(3.5)√

35/12
√

10

≈ 1− (2φ(1.76)−1)≈ 2(1−0.9608) = 0.0784
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